Telegram Group & Telegram Channel
Forwarded from Machinelearning
📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer



tg-me.com/machinelearning_interview/1705
Create:
Last Update:

📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1705

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Machine learning Interview from fr


Telegram Machine learning Interview
FROM USA